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in this paper, a numerical instability first observed in a 2D electro-
static gyrokinetic code is described. The instability should also be
present in some form in many versons of particle-in-cell simulation
codes that employ guiding center drifts. A perturbation analysis of
the instability is given and its results agree quantitatively with the
observations from the gyrokinetic code in all respects. The basic
mechanism is a false divergence of the E % B flow caused by the
interpolation between the grid and the particles as coupled with
the speciflic numerical method for calculating E — Vb Stability
or instability depends in detail on the specific choice of particle
interpolation method and field method. One common interpolation
method, subtracted dipole, is stable. Other commaonly used interpo-
lation methods, linear and quadratic, are unstable when combined
with a finite difference for the electric field. Linear and quadratic
interpolation can be rendered stable if combined with another
method for the electric field, the analytic differential of the interpo-
lated potential. © 1994 Academic Press. Inc.

1. INTRODUCTION; RELEVANCE TO OTHER WORK

For many years particle simulation has been an essential tool
for the investigation of nonlinear kinetic phenomena throughout
many areas of plasma physics [ 1-3). Standard particle simuola-
tion codes generally use some form of a particle-in-cell |2, 3]
method, whereby the particle source terms are accumulated on
a discrete grid through some specific method of choice for
interpotation from the particles to the grid and where the self-
consistent ficlds are then numerically solved on the grid and
then interpolated back to the particles to solve for the particles
trajectortes by a tinite difference in time. The specific choices
of the interpolation methods and the field algorithm are the
critical points for the issue dealt with in this paper.

The notation used in this paper is standard, cmploying Si
units. where dimensional quantities are distinguished, When
discussing lincar waves, Fourier analysis in space and tinwe is
assumed. exp(ik, + x — fw), with {requency w, and perpendicu-
lar wavenumber K. The ion gyro frequency is {),; and the ion
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gyro radivs is g, The electric lield is given by E and the
magnetic field by B.

Here we report the discovery and analysis of, and the remedy
to, & numerical instability in a 2D electrostatic gyrokinetic code.
The gyrokinetic formalism for low frequency @ < {1, particle
stmulation, allowing short perpendicular wavelengths, compa-
rable to or smaller than the ion gyro radius, k,p = 1, was
developed in a series of papers by Lee and co-workers [4-8].
Subsequently, others bave extended the models and reported
results using gyrokinetic particle codes applied to the study of
many aspects ol nonlinear drft wave phenomena [9-13), We
believe that all of this cited work employed codes using the
subtracted dipole |2| interpolation method which is not subject
to the numerical instability discussed in this paper. We have
discovered one published gyrokinetic paper, discussed below,
that used an algorithm that we believe to be unstable. The
instability may well have been present in some form in other
gyrokinetic codes used by others for related work not cited
here. The references cited here are not exhaustive; the intention
is to indicate related work that may be affected by the considera-
tions discussed in this paper. The numerical instability dealt
with in this paper depends only on the most basic feature of
the gyrokinetic formalism, the E X B drift motion. Numerical
instability or stability depends in a detailed way on the specific
choice of the methods used to connect the particles and the grid.

The gyrokinetic formalism has recently taken on new impor-
tance as it has become recognized that it offers the possibility
for successful modeling of instabilities and their effect on trans-
port in tokamaks. Tt clearly is important to reveal any possibility
of numerical etects impacting results purported to be primarify
representative of physics.

The principal attribute of the gyrokinetic formalism that con-
cerns us here is the guiding center E X B motion of the particles.
Our discussion will be limited 1o the zero gyro radius limit,
The numerical instability results from a false divergence of this
motion. For an electrostatic E and a uniform B, analytically
V- (E X b/8) = 0, but the numerical algorithms in the gyroki-
netic codes often produce a nonzero unstable response instead.
This instability may be present in some form in some of the
other codes in the gyrokinetic community. The only ones we
are awarce of is Sydora’s 2D code [14] which was the origin
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of the LLNL version, and one verison of Sydora’s 3D code
used for simulation of trapped electron instability [15]. This
latter code used an algorithm that our analysis shows to be
unstable (for our cold ion, adiabatic electron model), albeit
with a lower growth rate than the method in our unpstable
2D code. In addition, Sydora's drift kinetic treatment of the
electrons, as opposed to our adiabatic electron model, would
tend to further reduce the growth rate. Qur own observations
indicate that the instability is insidious because it is disguised
by smoothing and other effects and so is not apparent for
short runs dominated by the growth and saturation of a rapidly
growing physical instability: yet the numerical instability can
cause trouble in long runs. Based both on these observations
and on the lower growth rate for the method used for Sydora’s
trapped electron paper [15], we expect that his results are not
seriously contaminated by the numerical instability. But, we
do not recommend the method used in that paper for long runs,
since the method is at least weakly unstable. As mentioned
above. the work by Lee and his coworkers cited in the references
used a code with a stable algorithm. The instability may or
may not be operative in other gyrokinetic codes—this depends
in detail on the interpolation and electric field algorithms, as
will be explained in this paper. In addition, the instability may
exist in various other simulation codes that follow particles
using guiding center drifts.

The organization of the paper is as follows. In Section 2, we
report the characteristics of the numerical instability as observed
in our 2D electrostatic gyrokinetic code. In Section 3 a detailed
perturbation analysis of the code algorithim is presented. The
analysis 1s extended to many popularly used combinations of
interpolation methods and field algorithms. In Section 4 we
analytically examine the continuous limit, In Section 5 we give
a detailed discussion of the results specifying in detail which
methods are stable and which unstable. In Section 6 we give
a summary and conclusions and recommendations.

2. OBSERVATIONS FROM THE 2D GYROKINETIC CODE
2.1. Conditions for Instability vs Stability

The instability exists with either CIC (linear) | 2] or quadratic
[2] interpolation when combined with a 2-point finite difference
for the electric field.

The subtracted dipole {2} interpolation i1s perfectly siable,
exactly zero error response, when it is combined with a 2-
point finite ditference for E. In this case, unlike the linear and
quadratic interpolation methods, the analytic ecror response
for the subtracted dipole cancels term for term. Despite this
favorabie stability, our own preference is to avoid a subtracted
dipole because of its enhanced noise problems. A subtracted
dipole is used in Sydora’s 3D electrostatic code, and, we be-
lieve, in all of the work cited in Refs. [4-13].

Yet another method for calculating the electric field is to use
the analytic derivative of an interpolated potential, as results
from “‘energy conserving’’ schemes [2]. This produces a finiie
oscillatory response (stable) for any of the three interpolation
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methods, CIC, guadratic, or subtracted dipole. This £ field
method is our present method of choice for avoiding the insta-
bility.

The instability is most clearly observed in the limit of cold
ions and adiabatic electrons. For particle electrons and cold
ions it should cancel out. For finite gyro radius tons and particle
electrons, something should remain. For a general thermal ion
distribution, we still have to sort out what comes from this
instability response and what comes from the particle undersam-
pling noise; changing to a stable algorithm makes a major
change in a specific long scaling test run [16].

The instability prevents sensible code operation in perhaps
the simplest of all test cases: cold ions and adiabatic electrons,
obliquely propagating sound waves, with Vng, VT, = Q. Clean
ion sound waves, with energy well conserved, are observed
only with &k, = &, (plus or minus or both). All other modes
exhibit either growth or decay. The instability occurs regardless
of the excitation method. Without an explicit initial excitation
it starts from machine roundoff; with an explicit excitation it
starts at some higher initial level. In either case the instability
exhibits clean exponential growth (or decay). It is clearly a
linear phenomenon. In general, an oscillation can accompany
the growth; i.e., the mode frequency is complex, but this feature
is dependent on the location of the particle relative to the grid.
Growth rate for the (k,, k) = (2, —1) mode for 16 X 16 cells
is ¥/}, = 0.016. Saturation nonlinearly occurs, but not at
particularly low levels. The instability persists when & = 0,
where the sound wave disappears. So the effect is isolated to
the E X B flow. The instability persists when using many
particles per cell and it can be shown that it exists in the
continuous limnit.

The instability is most potent at short wavelength and can
be suppressed by a sufficiently strong smoothing factor. But it
persists for cold ion tests in a damaging way for 16 X 16 cells
with “‘typical” smoothing factor expt—(1.7kA)Y].

When the instability is present, energy is not conserved at all.
This characteristic also separates it from particle undersampling
noise for which energy is expected to be conserved. With
smoothing, the instability may survive but at a weaker level—
raising the possibility of gradual contamination over long times
of results that appear to be physically plausible.

2.2, Summary of Analysis Compared o Observations

Stability analysis and the code results quoted above agree
in all respects. In addition, we have analytically examined other
unstable schemes: Combining the CIC or quadratic interpola-
tion with a 6-point difference for £ recommended by Birdsall
and Langdon [2] reduces the growth rate but is still unstable
with either CIC or quadratic interpolation, in the single particle-
per-cell limit (the continuous limit is discussed in Section (4)
and Appendix B). We have also shown analytically that instabil-
ity occurs if CIC or quadratic interpolation or subtracted dipole
is combined with the electric field obtained from E(k) =
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—ikd{k). None of these latter combinations were attempted in
the gyrokinetic code.

2.3. What Is the Cause of the Instabiliry?

The root cause is a false divergence of Vg which leads to
a nonzero dn/dr even when Vn, = 0. There is a coupling
between the interpolation to and from the particles and the grid
that results in a finite change in », even with an initially uniform
distribution of particles. This occurs despite the fact that the
finite difference E = — V¢ does satisfy V - Vi = 0, if it is
evaluated on the grid. But interpolating E to the particle loca-
tions and interpolating the new particle tocations back to the
grid for accurulation of the change in density results in a net
finite response even for an initially uniform distribution of
particles (a subtracted dipole gives zero response if combined
with a centered finite difference for E).

This false finite response is not due to undersampling, i.e.,
not due to using too few particles—it persists when using many
particies per cell and it can be shown that it would still exist
in the continuous limit. Undersampling is generally responsible
for noise problems, but it is not a cause of this instability.

3. PERTURBATION ANALYSIS

3.1. Outline

A perturbation analysis of the code algorithm was formulated
to check the observations from the gyrokinetic code. The analy-
sis starts with a model of a uniform distnibution of particles,
with one particle per cell. We develop an expression for the
differential change in density caused by the E X B flow from
an arbitrary potential. Ideally this change in density should be
identically zero, so any finite response represenis an error
caused by the numerical algorithm. The formulation is general
but the detail depends on the choice of the specific interpolation
method and of the specific method for calculating the E field.

The immediate result of this analysis is an error stencil, a
sum of terms of the potential ¢, over a local region of grid
cells, For arbitrary particle location relative to the grid, this
error stenci) is spread over many grid cells, and each separate
s has several factors of products of interpolation weights and
their derivatives. The formulation of this error expression is
straightforward, but the number of terms can be somewhat
daunting: for example, the case of guadratic interpolation with
finite difference for F has 324 terms spread over a 7 X 7 local
stencil of ¢y, In order to avoid mistakes, the general analysis
was done with Mathematica. Its use here is not very sophisti-
cated. Even a novice user can quickly get up to speed for the
way it is used here. It is mainly used to automatically take
derivatives of various interpolation formulas and to automati-
cally sum the many terms that can arise.

The next step in the analysis is to relate the change in density
t0 an equivalent change in potential from Poisson’s equation
as used mn the gyrokinetic code; we then have a linear relation-
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ship with the only dependent variable being the potential, but
involving the inverse of the Poisson operator, and a difference
stencil that brings in the value of the potential at many neigh-
boring grid cells. The final step in the analysis is 1o express
the potential as a sum of Fourier modes. Then the many terms
can be summed and an expression for the growth rate results
for each Fourier mode.

3.2. Implementation

The density at the grid points x, from a single particle at x,
is a function W, of the ditference between the particle position
and the grid position. The values of the weights, W,, at the
grid points in the neighborhood of the particle are given by the
specific interpolation scheme,

n, = Wix, — X (1)

A single particle will contribute to the density at several
neighboring grid points: 4 (CIC), 5 (subtracted dipole), or 9
(quadratic). Thus, for one particle per cell, the density at a
given grid point will get contributions from several particles,
depending on the interpolation scheme. The differential change
in density from a differential change in these several particle
positions, &, is

i
dng= 3 + £ = Welx, — x,). @
” Xy

The electric field that determines the particle motion is then
given by the same interpolation formula applied to the fields
at neighboring grid points:

g;g,, =EXb/B=D EWix, ~x,) X b/R. (3)
b4

So we have for the time derivative of the net change in density,

o _ s [EE x brBWix, — x)] LW — X (@)
dr > i £ P i , axﬂ 8 " 87

where the subscript , on the square bracket term emphasizes
that the specific grid points referenced by the Eg depend on
the cell location of the particular particle p. And, since we are
here dealing with the model case of one particle per cell, the

3, can be replaced with a sum over grid points 2;:

dén,

i > [2 E, x b/BW(x, ~ xg)}

ad
e Wg‘(xp - xg')' (5)
2 xp
To be specific, we here give the detailed subscripted form
for each particie contributing to our reference grid cell 0,0 for
the case of CIC interpolation,
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a
Gnor (WopEgg + W Egy + WipEy + W EL 6—‘ Wo

Xp

d
Eorg IWooEoyo + Wo  ELyy + WipEy + Wi Byl T W_ia

B

d
&(L—I: T.WO.UEO.—! + WO.IEH.O + WI.UEI.fl + WI.IEI,O] _67 WU.#]

P

d
Ea o iWoo B+ Wo B+ Wik + WI.!EO.U;E; W -

P

and where the negative subscripted weights have the identifi-
cation:

W_ip= Wis
Wo- = Wy,
W_,. = W'.,l-

The precise form of the CIC weights W are not given here.
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Other interpolation methods will differ in the detail of the form
of the weilghts and in the numbers of grid points used, but
otherwise the description is the same.

3.3. Number of ¢y Terms in the Error Expression

In general a particle can contribute to an arbitrary number
of grid points, but in practice it is usually a small number,
defined by the interpolation scheme. Thus, for one particle/
cell, a single grid point will have density contributions from
varying numbers of particles, dependent on the interpolation
scheme:

4 (CIC),
5 (subtracted dipole), or
9 (quadratic).

Similarly, the displacemers of a single particle will have contri-
butions from the electric field at several neighboring grid poinis;
the number is dependent in the same way on the interpolation
scheme. The displacements in the X and Y directions bring in
another factor of 2. The finite difference for E = —V ¢ brings
in yet another factor of 2:

4 X 4 X 2 X 2 = 64 total CIC
particles gridpoints X, ¥V finite diff
) X 9 x 2 X 2 =324 1otal  quadratic.

3.4. Generation of the Error Stencil

We now have developed the analysis far enough so that the
error stencil can be generated; after substituting for the particu-
lar algorithm for E, it is simply the r.h.s. double sum over a
local region of ¢y, For arbitrary particle location relative to
the grid, this sum will involve many terms. The Appendix gives
the fuil error stencil for CIC with finite difference for £. Before
expanding the weight factors there a total of 64 terms are spread

over a stencil of 5 X 5 grid points. Expanding the weights
cancels some terms but adds others to give a total of 88 terms.
Int this form the expression is a function of the particle location
relative to the grid, dx, dv. In this form it is not very illuminating,
except that various symmetries can be observed. For particular
particle locations, this error stencil simplifies greatly; e.g., for
the particle located at the exact midpoint between grid points,
dx, dy = 0.5, 0.5 we have a sum of only eight terms and all
have a coefficient of =0.0625:

0 —¢[-1,21 0 +é[l1.2] 0
-2, 1] 0 0 0 —¢2, 1)
fig?f = 0.0625 0 0 0 0 0 (6)
~¢l-2, -1 0 0 Q +l2, ~1]
0 +¢l-1,-21 0 —¢l1, -2] 0

3.5. Calculation of the Growth Rate

For the midpeint particle location we get exactly the same
answer for quadratic interpolation. This stencil is much simpler
than the general case (64 terms for CIC, 324 terms for qua-
dratic), but even here, io go further we have to relate the density

on the Lh.s. to the potential, which of course is given by the
Poisson equation here, as used in the gyrokinetic code,

%(—Vi + Up)g = dnele,. ™
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Substituting from this for n = 8n, into our error expression
gives a relationship involving only the potential;

dé _ __ Ve xb
a0, ~ > [2 et "*')l' "
2 WX, — x.).

0X,

Here, the V operator depends on the choice of method for
calculating E = —V, either (1) a finite difference operator
on the ¢, (as was used for the midpoint particle limit shown
above), or (2} an analytic derivative operating on the W(x, —
x,), or (3} —/k, operating on the value of (x, y) at the grid
points relative to the focal value of x, y, as are specified by the
interpolation formula,

b= dx + mAd, y + ndy=dx +m y+n) (%

where we have normalized the grid size A = 1. Now replace
x, y) with its Fourier representation,

Mx, y) = spsin(kx + ky) + ¢ cos(kx + k)

=55 +¢C (10)
and for the potential displaced at various grid points,
¢, = sy sinthx + ky + kan + k)
+ e coslhox + ky + ko + ko) (i)
or
¢, = siScostk.m + kan) + 5,0 sin(kan + ko) (a2

+ ¢,Ccosthom + k) — 8 sinlkm + k).

Substituting into our expression for the time rate of change
of the potential and separately collecting terms for s; and ¢,
we have

%s = 8§ costkm + k) + C D sin(kyn + kn) (13)

%c = C D coslh,m + k) — § ) sintkam + k), (14)

m.

where theé m,n indices result from the Egd.'ag over neighboring
grid points as dictated by the interpolation formula and the
finite difference (if used). Now by evaluating these sums for
specific modes we can evaluate the mode complex frequency
p = lm,

(p#mzmcos)SJ(%sin)C=0

(15)
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(Zsin)S#-(p‘Zcos)C:O,

mn mi

so the mode growth rate is given by solution of

(p -2 cos)2 + (Z sin)z =0. (16)

mn HLn

Example for the midpoint particle location for CIC interpoia-
tion and 2-point finite difference E: In this case the E,,,_,, sin =
0, which means the oscillatory part is zero, and the 2, COS iS
given by the above eight-term stencil, which can be rewritten as

2 cos = (.25 (sin 2k, sin k, ~ sin k, sin 2k,), )
Including the Poisson operator coefficient we have
sin 2k, sin k, — sin k, sin 2k, ,
v/}, =025 -, (18)

kit ki +p
4. CONTINUOUS LIMIT

4.1. Integration of Single Particle per Cell Results

The results for the limit of a continuous distribution of parti-
cles can be obtained simply by integrating over a single grid
cell | dxdy the Mathematica general result for the single parti-
cle-per-ceil. This can be done easily within Mathematica; the
integrations are trivial, the only complication being the many
terms. The result for CIC interpelation with two-point finite
difference E is the same error stencil as for the 0.5, 0.5 single
particle case but modified by a factor 3. The result for quadratic
interpolation is more complex but close to the same result.
A variety of combinations of interpolation methods and field
methods have been examined and detailed results obtained for
the growth rate dependence. The results obtained by integration
of the single particle per cell results have been shown to be
identical to those obtained by a formal derivation starting with
a continuous distribution, which will now be given.

4.2. Formal Derivation of a Continuous Limit

The continuous limit can also be approached analytically
without having to keep track of numerous terms that arise from
the single particle-per-cell limit. The result of this section gives
a formal derivation of the continuous limit. Results obtained
thereby agree in all details from those obtained from the integral
forms of the Mathematica results.

We here derive the dispersion relation for the numerical
instability for a wniform distribution of particles. As for the
single particle per cell case, the polarization density [8] is kept,
but the parallel motion and FLR effects are neglected in the
following calculation.
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The density of simulation particles, interpolated onto grid
point X, is given formaily by

n, = 3, Wlx, — %), (19)

where W, is the weighting function and x; is the position of
the ith particle. The first-order perturbation in this density due
to a flow V,; of the particle positions is given by

%&z#(r) =2 Vixp, ) V, Wy, — XX = xg,  (20)

where X, is the zero-order position of the ith particle. Now
suppose that the x,y’s are uniformly distributed. Then the particle
sum can be replaced by an integral,

%&zﬁ(n - j dXV(x, 1)+ V, Wi(x, — X). Q1
¢
Upon integration by parts, we obtain
d
= on ) — - | axw(x, = 09, - Vex), (22)
)

where the time dependence of V(x, r) has been suppressed.
From Eq. (22), it is seen that if the perpendicular flow V is
incompressible, as is the case when V is calculated by analyti-
cally differentiating an interpolated potential {2], then a uniform
particle distribution gives no density response.

In what follows, we consider the case where V represents
an E X B flow and is calculated at the particle positions by
interpolating between the values of the E X B flow at nearby
grid points. An instability can result when the perpendicular
flow is compressible, as a result of the interpolation scheme
used. Consider, therefore, the flow

Vix)= > W(x — x)Vix,),
g

where
Vix,) = —b X E(x,)/B.

E is the eiectric field, the sum is over grid points g, and W is
the field interpolation function. The field is calculated by a grid
operation (finite-differencing, or differentiation of a discrete-
Fourier representation) of the potential, denoted A, Thus
we have

a(—jtﬁng = —h x E Adg, - fdeg(Xg - x)V, Wix - X, (23)

Upon taking the discrete Fourier transform (i.e., applying the
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operator (1/N,) 2, exp(—ik - X,); where N, is the total number
of grid points in the system, and the boundary conditions have
been taken to be periodic both in the x and v directions) of Eq.

(23), and anticipating that the Fourier modes are eigenmodes,
we obtain

vidn, = —b X D - Ug/B, (24a)
where
D = [A exp(ik - x)||x = 0 (24b)

and
U= exp(—ik - x,) f dxW(x, — )V, W(x).  (24c)

We now spectalize to the case of a rectangular grid and
separable ‘‘momentum-conserving’’ choices of the weighting
functions W(x) = W(x) = W,(x/A)W.{y/Ay). This gives

U = [A, Uk A)UlkA), A UKAU kA,

where
U® = Y exp(=i®) [_dW(j - W),
U= 3, expl=if6) [~ dxW(j = oW )

Ail of the discretizations of the derivative operator considered
give a result of the form

D = [DAID.(ANA,, Di(kA)DKAYA,]
so that we obtain

‘Ykank = [D 1 (kxA:} Up(krAr)D(k\A|) U(k\A\)
= Dk AJURAID (K ANU K, A) i B.

Inserting this into the gyrokinetic Poisson equation, Eq. (7)
gives, finally, the dispersion relation for the perturbations asso-
ciated with the grid errors

X

Qﬂ- = [DI (kxAJ:) Up(kx Ar)D(kl A\) U( k\AI)

~ Dl AUk AID\(kAIU (AT + & o).

Thus we need to evaluate only the four single-variable func-
tions D\(£), D(&), U,(5), and U{§). For most common discreti-
zations of the derivative operator, we have D, = 1. The func.
tions £/, and U are sums of a small number of exponentials, the
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coefficients of which are determined by analytically evaluating
simple one-dimensional integrals.

In Appendix B, an alternative derivation of the dispersion
relation is given. The resuits given there can be obtained by
inserting Fourier integral representations for W, and Winto Eq.
(24¢) and performing the integration with respect to x.

Equation (24a} also gives a prescription for obtaining a differ-
encing scheme for the field caculation that will be stable for
any given interpolation scheme. If I and U are parallel, then
Eq. (24a) implies that y,dn, = 0. The choice of interpolation

scheme determines U. One then constructs a differencing opera- -

tor such that D is parallel to U. For the separable cases, for
example, the scheme will be stable if one chooses Dy{(£) =

V(& and D(&) = UL,

4.3. Results from the Continuous Limit Derivation

We will consider three discretizations of the derivative op-
£rator:

(1) Difterentiation of the Fourier representation,

D(&y = i€,
D& =1

(2) Two-point centered difference,

DS =1ismé§
D=1

(3) Six-point scheme recommended by Birdsall and Lang-
don [2]

D(& = isin
D& = (2 + cos H3.

The following choices are considered for the weighting func-
tion W

(1) CIC:

U = (2 + cos £/3,
U & = isin &

In combination with the centered-difference discretization of
the derivative, CIC weighling gives

sm(k A sin(k A)[cos(k,A,) — cos{(k.A)].

ly_l__
31 +kp

Expanded to fourth order in kA, this becomes
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! 1

X 2 2
0. 61+ kp 2(kAr)(kA)l(kA) (kAN

In combination with the derivative calculated by differentiating
the discrete Fourier representation, CIC weighting gives

Y1
0, 31+ k1 72 (b 20sin(k A2 + costhA))
— (kA sink A2 + cos(h,A)]

This gives zero growth to fourth order in kA. It is of interest

to evaluate this result for kA of order 1. For kA, = /2,
kA, = 7/4, we have
V2 -
i, =L 3V274 600778, (25)

24 (1 + 373/16)

In combination with the Birdsall-Langdon six-point difference
operator, the CIC weighting gives an identically zero growth
rate.

(2) Quadratic spline:

U&= (132 + 104 cos £ + 4 cos 287240
=1 — £/4,

UA&) = isin &5 + cos £/6
=gl — £/12).

In combination with the centered-difference discretization of
the derivative, quadratic-spline weighting gives

S S
Q. 14401 + &3 pd)
sin(kA,) sin(k, A H[5 + cos(k,A)]
[132 + 104 cos(kA,) + 4 cos(Zk,AD] — [y < x]}

This expression can be manipulated to become identical to the
form derived from the integral of the single particle results.
Expanded to fourth order in £A, this gives the same result as
CIC weighting, given above. In combination with the derivative
calculated by differentiating the discrete Fourier representation,
quadratic-spline weighting gives zero growth rate to fourth
order in kA. In combination with the Birdsall-Langdon six-
point difference operator, quadratic-spline weighting gives zero
growth rate through fourth order in kA.

All of the continuous limit results obtained from the formal
derivation agree in detail with those obtained from the integra-
tion of the Mathematica single particle per cell results. All
analytical results are collected together in the tables at the end
of Section 5.
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FIG. 1.

4.4. Simple Picture of Unstable Eigenmode

In order to give the reader some intuitive understanding of
the instability mechanism, we give a picture of the flows in-
volved. We treat the simplest case: CIC interpolation with
Ey = —ikdy used for the field calculation at the grid points.
This case is not the most unstable method, but it is perhaps the
casiest to understand because it preserves the direction of the
analytic flow. We choose the unstable mode k = (27/4, 27/8)
(in units in which A, = A = 1), We specify the phase by the
choice ¢ = sin{m(x/2 + y/4)]. Then the E X B velocity calcu-
lated at the grid points is given by v = b X V. /B = v(x,)¥,
where v(x) = cos[a(x/2 + y/4)] and ¢ = (—1/V5, 2/V5),
and the subscript g denotes the coordinates of a gnd point. The
contours of v{x) are shown in Fig. i(a). Now a simulation
particie at X not ont a grid point does ror move with velocity
v{x)¥, but rather with velocity v, (x)¥, where

UalX) = D WX — X )U(x,).

The contours of v;,, with W given by the CIC interpolation
funciion are shown in Fig. 1{b). It can be seen that there are
now variations parallel as well as orthogonal 1o ¥, 50 2 nonzero

S81/115/2-9

Contours of (a) ¥(x), {b) vindX), (¢} V. - (o (x)®) for k, = n/2. &k, = 7/4.

divergent flow is evident. The contours of the V| - {v;,¥) are
shown in Fig. t(c), and are seen to be discontinuous across
the cell boundaries, a characteristic expectied from the CIC
interpolation method. These contours can be understood from
Fig. 1(b) by noting that V, - {v,,¥) = ¥ - V_ v, since ¢ is
independent of position. If v, is increasing in the direction of
¥, then V,; - (vi¥) is posilive. We see from Fig. 1(c) that
V. * (vin¥), deposited onto the grid points, is 180" out of phase
with ¢». Using the linearized continuity equation dn/dr = —my
I dxW(x, — x)¥ - V v,,(x} and n = a¢, where « is real and
positive, we see that the change in the potential produced by
the seed potential is in phase with the seed potential, resulting
n instability.

5. SUMMARY OF STABILITY DEPENDENCE ON THE
NUMERICAL ALGORITHMS

The perturbation analysis of the code algorithm predicts the
instability—stability characteristics and agrees with the observa-
tions from the gyrokinetic code in olf respects. The predictions
of the analysis agrees within measurement accuracy from the
code results for the magnitude of growth rate and real frequency.
Similarly both agree in detai! on the presence of unsiable growth
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(decay) or a stable oscillation or an identically zero error re-
sponse. Another feature clearly evident in both the code and
the analysis is the dependence of the stability characteristics
on the particle position relative to grid in the limit of one
particle per cell. Perhaps the most critical item with respect to
the particle position is the behavior in the limit of a continuous
distribution of particies (for the analysis) and the limit of many
particles per cell (for the code). Both the analysis and the code
show persistence of instability in these limits; and they both
show reduction to zero error of the oscillatory (stable) methods
in these limits. Some specialized methods {examined analyti-
cally only) have a finite growth rate for a single particle per
cell but reduce to zero or very small growth rate in the continu-
ous limit. The analysis and code also show detailed agreement
of the stability dependence on mode number, &, , k,. The method
originally used in the code, [Z—E1A, has growth rate scaling as

y =k — kAN + G+ K+ 1),

Thus the mode (&, &} = (2, 1) has negative growth rate (damp-
ing) while the mode (&, k) = (2, —1) has positive growth
rate. Asymmetry with respect to the sign of the &k, mode number
also has been observed by Lodestro [16]) in long noise runs
with the LLNL code using the unstable algorithm. Not all
methods analyzed were also put into the gyrokinetic code. We
indicate below which methods were examined analytically only.
The stability characteristics depend in detaii on the particle
to grid interpolation methods and on the method for calculating
the field at the particles. We examined three basic interpolation
methods analytically and with the code stability variation:

(i1} CIC (bilinear) [2]

(I12) quadratic [2]. This has been the standard interpolation
in the LLNL 2D gyrokinetic code.

(I3A) subtracted dipole [2]. This method was used in all of
the work cited by Lee and co-workers.

([3B) Kruer-modified subtracted dipole {2]. This method has
a smoother interpolation than 13A, the standard subtracted di-
pole, and is expected to be less noisy. Its stability characteristics
will be seen to be nearly identical to I3A. Examined analyti-
cally only.

(13C) Nevins—Langdon improved subtracted dipole [2]. This
is yet another version of subtracted dipole with even smoother
interpolation; its noise characteristics should improve over I3A
and probably over [3B. But its stability characteristics wili be
seen to be similar to those of 11 or 12, unlike the other subtracted
dipole methods. Examined analytically only.

We also examined stability variation with three methods of
calculating E at the particles:

(E1A) Two-point finite difference of ¢ (standard in the LLNL
2D gyrokinetic code) calculated at the grid points; this E is

BYERS ET AL.

TABLE 1

Error Response from Divergence of £ X 8

E ficld
Interpolation Finite diff. ., ke,
11 CIC Grows Oset Grows
12 Quadratic Grows Ose? Grows
I3A Subdipole Zero Zero Grows
3B SubdK? Zera Zero Grows

“Os¢c = finite oscillatory (stable) response: approaches zero
response in continuous limit.
* SubdK = Kruer improved subtracted dipole.

then interpolated to the particles. Here, any of (I1) CIC or
(12) quadratic or (I3C) NL interpolation produces instability.
Subtracted dipole 13A or [3B is stable—each term cancels
identicaily to give zero false response. Instability persists for
many particles/cell for any of (I} CIC or (12) quadratic or
(I13C) NL interpolation. The growth rate observed in the gyroki-
netic code asymptotes quickly as a function of the numbers of
particles/cell.

(E1B) Six-point difference, recommended by Birdsall and
Langdon. Examined analytically only. Interpolation methods
Il and 12 in the single particle per cell limit remain unstable
at a rate 4 of the peak single particle rate. But the continuous
limit is much different; method [I now has identically zero
growth rate, and 12 has a finite but strongly reduced growth
rate. On the other hand, this 6-point difference scheme destroys
the perfect zero error response obtained by the subtracted dipole
methods [3A and I3B when combined with the 2-point differ-
ence. We have derived a modified 6-point difference for E,
method E1Bm, that recovers the perfect zero response when
combined with interpolation methods 13A and [3B:

1 0 41
cap=2LI 4 0 44
EIB: a.b =77 (26)
~1 0 +1
-1 00 0 +
Cae=D 0 g 0 #8380 :
BiBm: a =S5 @7
-1 00 0 41

(E2) analytic derivative of the interpolated ¢ at the particle.
Each interpolation weight is analytically differentiated:

a
E =- 2 by W = X))ley, (28)

Any of (113 CIC, (12) quadratic, or (I3C} NL subtracted dipole
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TABLE 1I

Growth Rate as Function of k., &, for the Midcell Particle Position

8 0 0 0 0 0 0 1] 0
7 +.015 +.024 +.1023 +.016 +.008 +.002 0 0
6 +.032 +.049 +.044 +.027 + 010 0 ~.002 0

v 5 +.045 +.064 +.052 +.024 U =0t — 008 g

f_l,—, = 4 +.048 +.061 +.036 0 -.024 =.027 —-.016 0
3 +.037 +.035 1] —.036 —.052 —.044 —.023 0
2 +.016 0 —-.035 —.061 —.064 —.049 —.024 0
1 0 ~.06 —.037 —.048 —.045 —.032 —.015 0
k, 1 2 i 4 5 6 7 8
k.

Nore. For either CIC or quadratic interpolation and 2-point finite difference E.

interpolation methods produces pure oscillation. Subtracted di-
pole (13A) or (I3B) has identically zero response, The oscilla-
tion response for (11), (12}, or (13C) approaches zero in the
limit of a continucus uniform distribution of particles. Analytic
proaf of this statement results from the formalism in the previ-
ous section where it was shown that any V satisfying V- V =
0 gives an identically zero response in the continuous limit,
In addition, the gyrokinetic code and the analysis show zero
response for more than one particie per cell for certain symmet-
ric distributions of particles, which are not uniform for any one
set, but which when added to other symmertric sets would be
uniform, fully consistent with the analytic preof of a zero re-
sponse in the continuous limit,

(E3) E(k) = ik@(k); E, at the grid is obtained from an inverse
FFT and this E, is then interpolated ro the particles. Examined
analytically only. Instability again occurs, now for all five inter-
polation methods, (It) CIC, (I2) quadratic, and (I3), (13B),

TABLE 1IIa

Growth Rate y(k., &) Dependence on Method CIC (11}, Quadratic
(I2)——Single Particle per Cell

$ = max (ﬂl) (k&2 4 pr)

11, 2—ElA: ¥ = (sin 2k, ;in k, — sin k, sin 2k)/4
= (kA = Kk)4
1, 12—E1B: ¥ = (sin 2k, sin k, — sin k, 5in 24712
= (k k!~ kY12
1—E2. =0, % = 2sindk, — k) — sin &, + sin k]
w ik, — kA2
[2—E2: y =0,
@ = {312 sintk, — k) — 234{sin k, — sin k]
— 27[sin 2k, — sin 2k,) — 21[sin{k, — 2k}
+ sin(2k, — k)1 — 57[sin(k, + 2k} — sin(2k, + k)
- 9 sin(2k, — 2E041024
== (kik, — kAD3/64
[, [2—E3: ¥ = 120k sink, — k, sin &]

1Ak, — k) singk, + kY - (k k) sintk, — &)
= (ko kD — kM2

(I3C) subtracted dipole. In the continuous limit, growth rates
are strongly reduced but none of them are perfectly stable,

Summary of instability characteristics: Interpolation methods
11, 12, and T3C are unstable when coupled with E field methods
El or E3. All three of 11, 12, and [3C are oscillatory (stable)
with E2. This oscillatory response reduces to zero response in
the continuous limit. Interpolation methods [3A or 13B give
identically zero error response (stable) with E1A or E2; but
13A or 138 are unstable with the 6-point difference E1B; these
methods require a modified form of the 6-point difference,
E1Bm, to retain the identically zero response. Also 13A or I3B
is unstable with E3.

Our recommendation is 11—E2 or 12—E2. The subtracted
dipole combinations 13A, 13B-~E1A or 13A, 13B—E2 or 134,
13B—EI1Bm also are free of this instability, but they can be
expected to be noisier.

Certain combinations are stable or very small growth rate in
the continuous limit but have finite growth rate otherwise; it
is possible that such combinations will give practical stability,
but we cannot recommend them as being completely free of
the instability. See Table [ for a partial summary chart.

TABLE IIIb

Growth Rate y(k,, k) Dependence on Method
Subtracted Dipole{l3)-—Single Particte per Celi

¥ = max (g—) (k+ Ak + p7h)

I3A, [3BB—E1A: $=0,0=0

[3C—EIlA: ¥ = (sin 2k, sin k, — sin &, sin 24,)/4
= (k&1 — B4

I3A, 13B—EIB: ¥ = (sin 2k, sin k, — sin &, sin 2k,)/12
a= (ko — K )N2

[3A, 13B—E1Bm: =0 a=0

[3A, [3B—E2: y=0ha=0

I3A, I13B—E3: ¥ =kosink — k sink,

= (ktk, — kk/6
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TABLE Illc

Growth Rate y(k,, k) Dependence on Method CIC (11), Quadratic
. (12)—Continuous Limit

=X
(1,
(sin 2k, sin &, — sin &, sin 2k)/6

= (k! — klk)/6
[2—E1A; ¥ = [195 (sin 2k, sin k, — sin &, sin 2k,)
+ 10 (sin 3k, sin k, — sin k; sin 3k,)
+ 1 (sin 3k, sin 24, ~ sio 24, sin 340171440
~ (k&) = K3k)I6

(R + Kk +plh)
I—El1A: ¥ =

II—E1B: ¥ = (0 (only in continuous limit)
I2—EIB: ¥ = [26 (sin 2k, sin k, — sin &, sin 2&,)
= 4 (sin 3k, sin &, — sin k, sin 3k}
— 2 {sin 34, sin 24, ~ sin 2k, sin 3&,3]/1440
= (k kD — Kik)180
I—E2: ¥=0.@ = 0 (only in continuous limit)
12—E2: ¥ = 0: @ = 0 {only in continuous limit)
{[—E3: ¥ = 203k, sin k, — &, sin k]
+ 16[(k, — ko sin(k, + &) — (& + &) sink, — £)]
= (ki'ky — kxky®/180
12—E3: F = {6600k, sin(k,) — &, sin(k,)}

+ 66[k, sin(2k,} — k, sin{2k,)]

+ 260[—(k, + &) sin(k, — k) + (k, — k) sinlk, + &)
+ 26[—k, singk, — 2k) — &, sin(2k, — &)

— k, sin{2k. + k) + k. sin(k, + 2k)]

+ 10[—k, sin(k, — 2&) — k, sin(2k, — k)

+ ke sin(2k, + k) =~ &, sink, + 2k

1=k + k) sin(2k, — 2k) + Gk, — &) sin(2k,

+ 2EHI1440 = 0000198k ™y — keky™)

Table 11 shows the numerical value of the growth rate as a
tunction of mode numbers &, k,, for method [1—E1A or [2—
ElA with one particle per cell for particle location midway
between the grid points.

Tables 1lla—d give the growth rate’s functional dependence
on wavenumber, y(k,, k) as it varies with the interpolation and
field methods. Table IV shows the numerical value of the
growth rate for k, = 7/8, k, = 7/4 as it varies with the interpola-
tion and field methods.

TABLE IlId

Growth Rate y(k,, &} Dependence on Method
Subtracted Dipole (I3)—Continuous Limit

y =gk
3A,3BB—ElA:  §=
IB3C—ELA: ¥ = (sin 2k, sin k, — sin k, sin 2k)/4

(hodd — K3k g4
13A, 3B—E)B: ¥ = (sin 2k, sin k, — sin k, sin 2k)}/12
(kkd - kik)/12

13A, I3B—ELBm: =0 w=0
I3A. [3B—E2: y=hao=0
I3A. I3B—E3: ¥=k . — Kk, sin &,

BYERS ET AL.

TABLE 1V
Growth Rate {(k, = #/8, k, = #/4) versus Method

Single particle per cell

Continuous limit

Method viC,; v
11—E1A 0165 0119
12-E1A 0163 0106
II—E1B 00549 0
12—EB 00549 000262
It—E2 y =0, w = 0654 ¥y=0 =0
12—E2 v =0, w = 00300 y=0w=
11—E3 00593 —.000326
12—E3 00593 —7.56107*"
I3A, 13B—FI1A y=00=0 =0, w=
I3C—ElA 0165 0165
13A, 13B—E1B 00549 00349
13A. I3B—E1Bm y=0w=0 y=0w=0
13A, 3B—E2 y=0 =0 vy=0,m=0
[3A, I3B—E3 —0128 —0128

6. SUMMARY AND CONCLUSIONS

We have demonstrated the existence of a numerical instabil-
ity caused by a false divergence of V.. The agreement between
analysis and observations from our gyrokinetic code is essen-
tially perfect. This instability may be operating in some existing
gyrokinetic codes and possibly in a variety of other particle
simulation codes that employ guiding center drifts. Its presence
depends in detail on the particle interpolation methods used
and on the field algorithm. The instability can be suppressed
by smoothing, but even with smoothing there is the danger that
instability can be present at low growth rates and so it can be
unnoticed and then grow over long times to damaging levels.

Much of the analysis was done with Mathematica. Its use
here greatly speeded up the calculations. It is mainly used to
automatically take derivatives of various interpofation formulas
and to automatically sum the many terms that can arise, An
independent analysis of the continuous limit agrees in detail
with results obtained from the integral of the single particle
per ceil Mathematica results.

At the risk of stating the obvious, we emphasize that the
instability, or the oscillation, is not physics. Either form of a
finile response represents an outright error. The lack of any
physical interpretation for the instability is emphasized by the
fact that the energy is not conserved at all during the develop-
ment of this instability. This is in conirast to undersampling
nojse, commaon to all particle-in-cell simulation methods, that is
expected to conserve energy to some degree of approximation.
Undersampling noise, while undesirable, still is usually thought
of as representing model physical effects, such as absorption
and emission of waves, albeit at enhanced levels. No such
interpretation can be assigned to this numerical instability. This
suggests that this phenomenon could be responsible for the
intermittent *‘jumps’’ in the energy that we observe in many
of our thermal ion runs with the gyrokinetic code,
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We are presenily gearing up to test the gyrokinetic code with  effects, etc., are still being analyzed. Major differences
the stable 12-—E2 analytic £ method for standard Lee-Tang have been seen by Lodestro {16] in a specific long scaling
cases. Inmitial results show clear differences, but trends, gross  run.

APPENDIX A: GENERAL ERROR STENCIL FOR C1C INTERPOLATION AND 2-POINT FINITE DIFFERENCE E
The following is the error stencil as evaluated by the Mathematica program. It has 64 terms spread over a local 5 < 5 grid points.

drhotot:
~(Ay*(0.B+(1. — dx)*(1. ~ dy)+(-pote[—1, —R] + potel-1, ON) +
0.5#(1. — dx)*dy*(—pote[—1, —1] + pote[—1, 1]) +
0.5+dx*(1. — dy)+(—pote[0, —2] + pote[0, OD +
0. 5xdx+=dy*(—potelO, — 1] + potelC, 1) -
(1. - dy)*(0.5x(1l. — dx)*({1l. — dy)*(—pote[-1, —1] + pote[—-1, 1]> +
0.85+(1. — dx)*dy+(—pote[—1, O] + pote[—-1, D) +
0.8+dx=(1. — dy)*=(—pote[0, —1] + potel0, 1) +
0.8+dx*dy=*(—pote[0, 0] + potel0, 21)) +
dx*(0.5%(1. — dx)*(1. — dy)*(~pote[—8, —1] + pote[0, —1]) +
0.8+(1. - dx)*dy*(—pote[—2, O] + pote[Q, O +
0.8+#dx*(1. — dy)*(—pote[—1, —1] + pote[l, —1]) +
0.8xdx+dy+(—pote(—1, 0] + pote[l, OI)) —~
dx*(0.5+(1. — dx>=(1. — dy)*(—pote(-—-2, O] + potelO, O1) +
0.5%(1. — dx)*dy+(—pote[—2, 1] + potel[0, 1) +
0.5xdx+(1. — dy)*(—potel[—-1, O + pote[l, O +
Q.Bxdx+dy=(—pote[-1, 11 + potell, 11 +
dy*(0.8+(1. — dx)*(1. — dy)*(—pote{0, —2] + potel0, O +
0.8+(1. — dx)+=dy=(—potel{0, -1] + potel0, 1D +
0.8+dx+(1, — dy»{(—pote(l, —2] + potell, O] +
0.5=dx+dy=(—pote[l, —1) + potefl, 11> +
(1. — dy>+(0.5+(1. — dx)*=(1. — dy)=(~poteld, —17 + potelO, 11> +
0.5+(1. — dp*dy*{—pote[D, O] + potel0, 2> +
0.5+dx*(1. — dy)*(—potell, —1} + potell, 1] +
0.5*dx=dy={—pote[l, 0] + potell, 2D +
(1, —dx)*(0.5=(1. — dx)*(1. — dy)*(—pote[—1, —1} + pote[l, —11> +
0.8%(1. — dx)=dy=(—pote[—1, O] + pote[l, O1) +
0.5xdx*(1. — dy)*(—potel0, —1] + pote[2, —11) +
0.85*dx+dy*(—potel0, 0] + pote[2, O} —
(1. - dx)*(0.8+(1. — dxO*(1l. — dy>*(—pote[—1, O] + pote[l, O] +
0.5%(1. — dx)+dy*~(—pecte[—1, 1] + pote[l, 1D +
0.5+dx*(1. — dy)*(—pote[0, 0] + pote[8, O} +
0.5xdx+dy+(—pate(0, 11 + potei&d, 113

Now expand this

0. — 0.5+dx*pote(—&, —1] + 0.5+dx"a*pote(—2, — 11 + O0.5+dx=dy+pote{—-2, —11 —
0.5=dx"8+dy*pote[~ &, — 1] + 0.5+dx*potel—2, 0] — 0.5+dx"3+pote[—2, 0] —
1.x=dx+dy+*pote[—2, 0] + 1.xdx"2+dy=pote[—2, 0] + 0.5+dx+dy+pote[- 2, 1] —
0.8xdx"2xdy+potel—2, 1] + 0.Bxdy»pote[-1, —2] — 0.5xdx+dy=*pote[—-1, —8&] —
0.5+dy " 2+pote[- 1, -2} + O.8+dx+dy " B+pote[—1, —2] + O.Bxdx=pote[—-1, —1] —
1.+dx"2*pote{—1, —1] — O.Bxdy=pote[—1, —1] + 1.«dx 2xdy+pote[—1, —1] +
1.xdy 2+pote[—1, —1) — 1.xdx=dy 3=potel-1, —1] + O.5+pote[—1, O] —~
1.sdx=pote[ -1, O] + 1.xdx"3=pote[—1, O] — l.xdy=pote[—1, O] +
2.xdx=dyspote[—1, O] — B.xdx"2+dy*pote[—1, 0} — O.B5«pote{ -1, 11 +
0.5=dx*pote[—1, 1] + 1.5=dy*pote[—1, 1] — R.xdx*dy=pote[—1, 1] +
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l.=dx"2=dy=pote[—1, 1] — 1.xdy Z=pote[—-1, 1] + 1.xdx*dy &=*potel -1, 1] —
0.5+dy=*pote[—1, B) + O0.5+dx+dy+*potel—1, 2) + 0.B+dy " R+potel—1, 2] —
0.5+dy*dy &+pote[—1, 8] — 0.B+dy+*pote[0, — 8] + 1.xdx+dy+pote(0, ~-2] +

0.8xdy " 2+potel0, —2] — 1.+dx=dy 2=potelQ, —-2] —

0.8+pote[0, —1] +

1. xdx*potel0, —1] + 1.xdy*pote[0, —1] — .+xdx=dy=*pote(0, —1] ~
1.xdy"2=pote[0, —1] + 2.+dx*+dy 2+pote[0, —1]1 + 0.B*pote[0, 1] —
1.#dx+pote(0, 1] — 1.xdy+pote(0, 1] + 2.xdx+dy=*pote(O, 1] +

1.+dy~2+pote[0, 1] ~ &.»dx=dy &*pote(0, 11 + C.5xdy=+pote{0, 8 —
1.=dx=dy=potel0, 2] — 0.5+xdy " 3+pote[0, 8] + 1.»dx+dy 2*potelD, 2] —
0.5+dxxdy*pote[l, -2] + 0.Bxdx+dy” 2+potell, —2} + 0.5+pote[l, —1] —
1.5+dx*pote[l, —1) + 1.=dx"2+pote[l, —1] — 0.Bxdy+*pote([l, —1] +
&.xdx*dy+pote(l, —1] — l.xdx"2*dy+potefl, —1] — 1.xdxxdy a*pote[l, —~1] —
0.5=pote[l, 0] + 1.xdx+potell, 0] — 1.xdx"2=pote([1, 0] + 1.=dy*pote[l, O] —
2. xdx+dy+pote(l, 0] + 2.+xdx"2+dy=*pote[1, 0] + 0.B=dxxpote(l, 1] —
0.8xdy=*pote(l, 1] - 1.xdx"2+«dy=*potell, 1] + 1.+xdx*dy 2+*pote[l, 1] +
0.8+dx=dy*pote(l, 2] - 0.B+dx+dy @*pote(l, 8] + 0.5xdx=pote(2, - 1] —
0.8+dx"R=+pote(8, —1] — 0.5+dx*dy=*pote[d, ~1]1 + 0.8+dx"3*dy=pote(, — 1] —
0.8=dx+potel’, 0} + 0.5+dx”"B*potel2, 0] + 1.+xdx*dy=potel2, 0] —

1.xdx" 2+dy+potelR, 0] — 0.5+dx+dy+pote[R, 1] + 0.5+dx"2*+dy*potelR, 1]

This expanded form has 88 terms.
The error stencil evaluated at 0.5, 0.5 is obtained by:

In[5] := Expand(drhotot] /. {dx->.5,dy—>.5}

Out{Bl= 0. — 0.0685 pote{—&, ~1] + 0.0685 pote[-8, 1] + G.06&5 pote{—1, -&] —
> 0.0825 pote[—1, 8] — 0.0838 pote[l, —2] + 0.06285 pote[l, 2] +

> 0.0825 pote[2, —1] — 0.0628 pote[l, 1)

APPENDIX B: ALTERNATIVE ANALYSIS FOR THE
CONTINUOUS LIMIT

The analysis here is an alternative to that of Section 4.2 and,
like that analysis, 1t shows ways to stabilize the instability that
are applicable in the limit of a large number of particles per
cell. One way, as noted in Section 4.2, is to use the analytical
derivative “‘energy-conserving’’ force calculation (in the termi-
nology of [2]). Also, the special case of the result stated at the
end of Section 4.2 for the case of bilinear (area) weighting of
charge and “*momentum-conserving’’ force is treated here. This
leads directly to scheme E1B of Section 5 (which is the modifi-
cation of the differencing of ¢ to get mesh E, that is the
same as Boris proposed in 1970 to make the directior of the
differenced field more accurate—closer to the direction of k).
This is consistent with the origin of the instability, since in this
case¢ the direction error leads to error in the divergence of
particle flow.

In Chapter 8 of [2], find Eqs. (8-9(7)), (8-%(8)), and (8-%(15))
relating particle force F and density » to grid potential ¢ anad
charge density o

pilk) = g > Sk, ni(ky)

F(k) = —igS(—kyxk)p(k),

so the particle flux is —inS(—~K)x(K)g(k) X Z/B, and
0L = ~k - 22 S 0)S(— k(i) k) X 2,

ar By

where nyg/By = £y Wi/,

d . d
2P = g 2, S0k) i)

= TEg @(k) Y, §kp)(kp X we(kp)) 2.
ci P

Now use the gyrokinetic field equation

2

“”Z“(K“(k) + %) o=2
'QEi fon €y

where K? is the mesh Fourier transform of the Poisson operator,
to get the dispersion relation
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. Ly 1 de n
(K'(k) + E) o 2 re(ky) X kpS2(ky).

The equivalence of this result and those of Section 4.2 can be
shown by inserting the Fourier representations of the weights
in Eq. (24c) and carrying out the integration with respect to x,

For the ‘‘momentum-conserving™ schemes covered by
Chapter 8 of [21, (k) = k(k) can be removed from the sam,
but this expression is more general. Depending on only the
expression F(k) = —igr(k)S(—k)g(k), it applies also ro the
“‘energy-conserving”’ schemes (see Section 10-6) and the
“multipole’” schemes (see Section 11-5).

For the *‘energy-conserving’® schemes, meaning that the
force is given by Eq. (10-2(6)),

F(x) = —qV|Ax| X, ¢S(X; - %)
]

{E2 of the main text), where |AX ! denotes the cell area, we
have x({K} == K, so there is no instability. (11—E2 and 12—E2
of the main text are stable methods; these are also stable in the
single particle-per-cell limit.) Time integration errors can spoil
this nice result.

For area-weighting (CIC),

sin’(k,Ax/2) sin’(k,Ay/2)

S == AT Ay

For “*‘momentum conserving’” schemes, the summation can be
factored into x and ¥ parts and evaluated as per page 173 of
{2] to tind

sin kA
K Dk, ST = Kt ( - Zsin? %k\.Ay)

P Ax 3
_ sink,Ax(g+1 kA)
K, o 373 cos k,Ay

and similarly for x, % k., §% With this result the dispersion
relation easily shows that the rate is zero if we choose

sin k,Ax (z !
K= ————

=+ —coskAy );
A |3 3cosk_._‘\;,),

365

i.e., £, 15 the common centered difference in x, plus a smoothing
in y with weights (3, 3, §). (CIC with this E is method I1—E1B
of the main text; it is stable in the continuous limit but unstable
in the single particle-per-cell limit.} Compare to Eqs. (14-9(8))
and (14-9(11)) of [2] to see that this is the same as Boris’
6-point scheme. While the present result is correct for all k,
Boris sought only to correct the direction to a relative error of
order (k. Ax) (Eq. (14-9(12))).

Using the result in problem 11-5¢ for S(k) for the subtracted-
dipole (SUDS) scheme one could similarly derive the SUDS
dispersion relation.
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